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Abstract

BACKGROUND: Precision weed control in vegetable fields can substantially reduce the required weed control inputs. Rapid and
accurate weed detection in vegetable fields is a challenging task due to the presence of a wide variety of weed species at various
growth stages and densities. This paper presents a novel deep-learning-based method for weed detection that recognizes veg-
etable crops and classifies all other green objects as weeds.

RESULTS: The optimal confidence threshold values for YOLO-v3, CenterNet, and Faster R-CNNwere 0.4, 0.6, and 0.4/0.5, respec-
tively. These deep-learning models had average precision (AP) above 97% in the testing dataset. YOLO-v3 was the most accu-
rate model for detection of vegetables and yielded the highest F1 score of 0.971, along with high precision and recall values of
0.971 and 0.970, respectively. The inference time of YOLO-v3was similar to CenterNet, but significantly shorter than that of Fas-
ter R-CNN. Overall, YOLO-v3 showed the highest accuracy and computational efficiency among the deep-learning architectures
evaluated in this study.

CONCLUSION: These results demonstrate that deep-learning-based methods can reliably detect weeds in vegetable crops.
The proposed method avoids dealing with various weed species, and thus greatly reduces the overall complexity of weed
detection in vegetable fields. Findings have implications for advancing site-specific robotic weed control in vegetable
crops.
© 2022 Society of Chemical Industry.
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1 INTRODUCTION
Vegetable production represents a large share of the agricul-
tural production in the world, and vegetables greatly contrib-
ute to human nutrition. China is the largest consumer of
vegetables in the world, and vegetables account for 35% of
per capita food consumption in the country.1 The total area
under vegetable production in China is 19.64 million hectares,
which accounts for approximately 12% of the total cropping
area of the country.2 Agricultural production needs to increase
to meet the growing demand for food produce, fueled by rapid
population growth. Weed control is a notable challenge in agri-
cultural systems, especially in vegetable production. Weeds
compete with vegetables for light, water, nutrients, and space
and can significantly reduce vegetable yields if not controlled
adequately.3–7 For example, a mixture of grass and broadleaf
weeds at a density of 65 weeds m−2 reduced the yield of let-
tuce (Lactuca sativa L.) by over 90%, whereas purple nutsedge
(Cyperus rotundus L.) at a density of 200 shoots m−2 reduced
the yield of tomato (Solanum lycopersicum L.) by 44%.7,8 In
China, weed control in vegetable fields still relies largely on
hand-weeding. Labor shortages and rising wages have
increased production costs, which in turn have led to increased
market price of vegetables.9,10 In addition, there are a limited
number of herbicides registered for weed control in vegetable
crops.11 The increasing occurrence of weed populations with

resistance to popular herbicides, along with the diminishing
discovery and commercialization of new effective herbicides,
creates demand for alternative weed control practices in
vegetables.12

With the recent advances in mechanization and robotics, pre-
cision weed control with mechanical methods appears to be a
promising option for weed management in row crops and veg-
etables.13 Robotic weeders can also improve the sustainability
of weed management while reducing herbicide inputs and
thwarting herbicide resistance evolution. Previous researchers
have invested great effort to develop mechanical weeding
actuators, but selective weed control without damaging the
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desired crops cannot be achieved without assistance from a
target detection system.14 The lack of robust sensing technol-
ogy to discriminate between crops and weeds is the primary
limitation to the commercial development of intelligent
robotic weeders.6

A variety of visual characteristics have been used in weed
detection,15,16 classification17 and weed mapping18 through
image-processing techniques. Generally, these characteristics
can be divided into three categories, namely color, morpholog-
ical, and textural features.6 Color features are appropriate for
vegetation segmentation, but they cannot reliably discrimi-
nate between crops and weeds. A large number of studies have
investigated the fundamental feasibility of using biological
morphology (shape and structure) to distinguish between
plant species.19 However, this method is limited to only the sit-
uation where the plant leaves are well displayed without occlu-
sion, and the shape of the entire leaf is undamaged.5 Texture is
normally regarded as a similarity grouping in an image. By
extracting and analyzing textural characteristics, weeds and
crops can be discriminated.20 However, one of the common
challenges in weed detection and classification is that crops
and weeds may exhibit similar morphological characteristics.11

In recent years, significant advancements have been made
with deep learning for weed detection.21 Kamilaris et al.
reviewed deep-learning techniques for weed detection and
concluded that these techniques have generally outperformed
traditional image-processing methods.22

The rise of deep learning has been fostered by improvements
in graphics processing units (GPUs).23,24 GPUs allow deep-
learning models to learn from a large amount of data, which
is vital to achieve high accuracy levels.25 Deep learning has
proven to be a promising approach in computer vision,26–28

natural language processing,29,30 and speech recognition.25,31

One of the most significant benefits of deep learning is that it
can automatically learn representations from raw data without
introducing hand-coded rules or human domain knowledge.25

Among the various deep-learning models, convolutional neu-
ral networks (CNNs) have a remarkable ability to extract desir-
able features from images.32–34 CNNs are currently being
employed as a powerful tool for image classification and object
detection.35–37

In agriculture, a considerable amount of research has been
reported on the application of various deep-learning tech-
niques for yield prediction,38,39 disease detection,40,41 insect
damage recognition,42,43 weed detection,44,45 and crop quality
examination.46,47 Olsen et al. presented deep-learning models
that accurately classified 16 different types of weeds with an
overall accuracy of >95%.48 dos Santos Ferreira et al. reported
that a CNN model reliably identified various broadleaf and
grassy weeds in soybean (Glycine max L.).49 Yu et al. compared
three image classification neural networks, including AlexNet,
GoogLeNet, and VGG16, as well as an object detection neural
network, DetectNet, and found the highest overall accuracy
for weed detection with VGG16.50,51 Recently, Arun et al. per-
formed weed detection in an unmanned aerial vehicle imagery
using Faster R-CNN and Single Shot Detection Detector (SSD).52

These studies utilized deep learning to detect weeds and dis-
tinguish crops and weeds directly. With this approach, deep-
learning models need to be trained with various weed
species.53–55 However, a wide variety of weed species may pre-
sent at various growth stages and densities in vegetable fields.
Setting up such huge training datasets is time-consuming and

labor-intensive. Moreover, it is difficult for the neural networks
to maintain high accuracy of detection for every weed species.
In the present work, the vegetable crops were detected by

CNNs, while nonvegetables (weeds) were extracted and dis-
criminated by image processing utilizing color features and
returning visual detection. The target vegetable species used
in this research was bok choy (Brassica rapa ssp. chinensis),
which is a fast-growing vegetable and typically matures within
25 days after planting. The objectives of this research were to
(i) evaluate and compare the performance of different deep-
learning models for vegetable detection and (ii) investigate
the feasibility of using deep-learning-based methods for dis-
criminating the vegetable crop and weeds for robotic mechan-
ical weeding.

2 MATERIALS AND METHODS
2.1 Overview
The method proposed in this paper for the detection of weeds in
vegetables can be divided into the following general steps:

(1) A trained CNN was used for detecting the vegetable crop and
drawing bounding boxes around it.

(2) Plants growing outside the bounding boxes were marked as
weeds and extracted via image processing utilizing color
features.

Three state-of-the-art CNN-based architectures, You Only Look
Once-v3 (YOLO-v3),56 CenterNet,57 and Faster R-CNN,58 were
evaluated for detection of bok choy, also known as Chinese
white cabbage. YOLO-v3 is an inheritance and improvement
over YOLO59 and YOLO-v2.60 In YOLO, object classification
and localization are unified into a regression problem. A YOLO
does not require a feature pyramid network (FPN), and it gen-
erates bounding box coordinates and probabilities of each
class directly at the output layer. YOLO-v3 is a single-stage
detection model and provides much faster detection. For fea-
ture extraction, YOLO-v3 utilizes Darknet-53 as the backbone
architecture, and the softmax loss in the old version has been
replaced by a logistic loss. CenterNet is an anchor-free object
detector. It models objects as key points and uses heatmaps
to predict the centers of objects. The heatmaps are generated
through a Gaussian kernel and a fully convolutional network
(FCN). Object properties, including size, dimension, orienta-
tion, and pose, can be regressed directly from the center local-
ization without any prior anchor.61 Faster R-CNN is a two-stage
object detection algorithm with fast detection speed. It con-
sists of a region proposal network (RPN) and a Fast R-CNN
detector. The RPN is an FCN, which extracts candidate-bound
boxes by setting anchor boxes with different proportions.62

The RPN is trained end-to-end to generate high-quality region
proposals, which are adopted by Fast R-CNN for detection. The
Fast R-CNN detector shares a set of convolutional features with
the RPN. In the region of interest (RoI) pooling layer, bounding
box regions are resized into uniform-sized feature vectors
using max pooling. Finally, a regressor is utilized to produce
accurate coordinate values of the bounding boxes.

2.2 Image acquisition
Images of bok choy growing under field conditions were acquired
using a digital camera (HV1300FC, DaHeng Image, Inc., Beijing,
China) at a ratio of 4:3, with an original dimension of
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2048 × 1536 pixels. During image acquisition, the camera was
approximately 0.6 m above the ground. The training and testing
images were acquired at multiple times between September
2020 and January 2021. The images of bok choy were collected
from multiple vegetable fields around Nanjing, Jiangsu, China
(32°120 N, 118°480 E). Bok choy did not emerge uniformly in the
fields. Thus, the training images were taken evenly under various
growth stages. Furthermore, the images were taken from
10:00 a.m. to 5:00 p.m. under various illumination conditions,
including cloudy, partly cloudy, and sunny days.

2.3 Training and testing
For vegetable detection training, all images were resized to
1400 × 1050 pixels using ImageJ (version 2.1.0, an open-source soft-
ware available at https://github.com/imagej/imagej). The training
dataset contained a total of 920 images, and these images were
expanded to 9200 images using data augmentation methods to
enrich the experimental dataset and enhance the robustness of the
detectors in the training step. The training images were pre-
processed in terms of brightness, rotation, flips, color variations,
and image definition. The validation or testing dataset contained a
total of 115 images. For detection of the vegetable crop, the training
dataset, validation dataset, and testing dataset contained a total of
11 339, 1552, and 1580 individual bok choy plants, respectively. Man-
ual annotation was performed by drawing bounding boxes onto the
bok choy in the training images using the custom software LabelImg
(version: 1.8.1, an open source software available at https://github.
com/tzutalin/labelImg). The program generated Extensible Markup
Language label files used for model training.
The training and testing processes were performed in the PyTorch

(Facebook, Inc., CA, USA) open-source deep-learning environment
using a graphic processing unit (NVIDIA GeForce RTX 2080 SUPER;
NVIDIA, Santa Clara, CA, USA). Transfer learning aims to utilize previ-
ously acquired knowledge accumulated from data in auxiliary
domains to solve new but similar problems in the current domain.63

ImageNet is a large dataset with more than 14 million labeled
images.64 In this work, three types of CNNs were pre-trained using
ImageNet to initialize the weights and bias through the transfer
learning approach. To ensure a fair comparison between the results
of all deep-learning models, all three CNNs were converted to the
PyTorch version bymodifying their weights andmodels to the corre-
sponding PyTorch compositions. Furthermore, the parameters were
fine-tuned to improve the performance of each CNN model before
training. The hyperparameters across experimental configurations
are presented in Table 1.
The results of validation and testing for all CNN models can be

divided into four types: true positive (tp), true negative (tn), false pos-
itive (fp), and false negative (fn). In this context, tp represents the total
number of vegetable instances successfully detected by the model,
tn indicates the total number of nonvegetable instances successfully
excluded by the model, fp indicates the total number of predictions

that are incorrectly identified as the vegetable crop, and fn represents
the total number of vegetable instances that are incorrectly not iden-
tified as the vegetable crop. For eachmodel, the precision, recall, and
F1 (defined in Eqn 6) score were computed over the whole period
of training at the end of 120 epochs.
Precision measures the ability of the model to accurately detect

the target, which was defined using the following equation:

precision=
tp

tp+ fp
ð1Þ

Recall measures the effectiveness of the model to detect the tar-
get and was defined by the following equation:

recall=
tp

tp+ fn
ð2Þ

During the training process, an intersection-over-union (IoU) was
used to determine if the object detected was a true positive, with
a threshold of 0.5.65 IoU is the overlap rate between the ground
truth box and the predicted box, which is used to denote the coin-
cidence between the reference and the predicted bounding box.
IoU was defined as follows:

IoU=
area BoxT∩BoxPð Þ
area BoxT∪BoxPð Þ ð3Þ

where BoxT is the ground truth box based on the training label,
BoxP is the predicted bounding box, and function area indicates
the area of intersection region.
Mean average precision (mAP) is the mean of the AP over all

classes at all recall values at different IoU thresholds from 0.5 to
0.95 for Common Objects in Context (COCO)-based evaluation.
In Pascal Visual Object Classes (Pascal VOC)-based evaluation,
mAP is calculated for an IoU threshold of 0.5.66 The mAP is a com-
monly used metric in object detection domain and was defined
using the following equation:

mAP=
∑
N

i=1
APi

N
ð4Þ

where N is the number of object classes. APi is the average preci-
sion for each class, which is computed as the area under precision-
recall curve (PRC):

AP=
ð1

0
P Rð ÞdR ð5Þ

In this study, we used mAP50, which represents the average preci-
sion calculated at an IoU threshold of 0.5. Since we only have one

Table 1. Values of the hyperparameters for the three different convolutional neural network models evaluated in the study

Model Batch Momentum Initial learning rate Optimizer Decay Training epochs

YOLO-v3 4 0.937 0.01 SGD 0.0005 120
CenterNet 4 0.900 1.25e−4 Adam 0.0001 120
Faster R-CNN 4 0.900 0.02 SGD 0.0001 120

SGD, stochastic gradient descent.
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class (vegetable), the mAP of the model is therefore equal to the
AP of the vegetable detection.
The F1 score is also one of the essential measures to evaluate

the model. It is defined as the harmonic means of the precision
and recall, and was calculated using the following equation:

F1=
2×precision×recall
precision+recall

ð6Þ

Frames per second (FPS) measures the number of images that are
processed on themodel per second. The higher the FPS value, the
faster the image processing is. The FPS was used as a quantitative
metric to evaluate the speed of different object detection models.

2.4 Weed segmentation
To extract weeds (pixels outside the bounding boxes) from the
background (i.e., soil, straws, and residues), the widely used excess
green (ExG) index introduced by Woebbecke et al.67 was adopted
with minor modifications:

ExG=
0, if g<r k g<bð Þ

2g−r−b, otherwise

�
ð7Þ

where r, g, and b are the normalized RGB coordinates ranging
from 0 to 1. Normalized RGB coordinates were defined as follows:

r=
R

R+G+B
, g=

G
R+G+B

, b=
B

R+G+B
ð8Þ

Since the modified ExG index is based on normalized RGB coordi-
nates, it is insensitive to the intensity of the light source as well as
illumination angle.68 The resulting grey image was then trans-
formed into a binary image using a method previously reported
by Otsu.69 Finally, an area filter was applied to eliminate random
noises, returning visual detection regarding the presence of
weeds in the image.

3 RESULTS AND DISCUSSION
3.1 Model performance with vegetable detection
The performance of the trained CNN models was tuned by
specifying a threshold for the output confidence scores. To
determine the threshold, 1552 ground truths from the valida-
tion dataset were used to evaluate the CNN models. Preci-
sion, recall, and F1 score of the models at nine threshold
values (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1) were gathered
(Table 2).
Among all prediction boxes, the one with a confidence

score greater than the threshold was considered as a tp.
The best precision value for YOLO-v3 was 1.0 in the valida-
tion dataset when the confidence threshold value was 0.9;
however, in this case, a low recall value of 0.440 was
obtained. In contrast, when the confidence threshold value
was 0.1, the model achieved high recall and precision values
of 1.0 and 0.953, respectively. The optimal confidence thresh-
old for YOLO-v3 was 0.4 as it achieved a balanced perfor-
mance with precision and recall. Using this confidence
threshold, we obtained precision, recall, and F1 score of
0.983, 0.980, and 0.981, respectively. A recall value of 0.980 indi-
cated that 98.0% of the vegetable instances were detected. Like-
wise, CenterNet achieved the highest F1 score when the
threshold value was 0.6. The precision value with this confidence

threshold was 0.978 in the validation dataset, indicating that the
model achieved 97.8% accuracy in successfully predicting the cor-
rect vegetables. When the confidence threshold was 0.4/0.5, Fas-
ter R-CNN achieved the highest F1 score of 0.972 along with high
precision and recall values of 0.974 and 0.970, respectively.
The final performances of YOLO-v3, CenterNet, and Faster

R-CNN (with threshold values of 0.4, 0.6, and 0.4/0.5 for the confi-
dence score, respectively) were evaluated using 115 images from
the testing dataset. Table 3 shows the metrics comparison results
in terms of precision, recall, F1 score, AP, and FPS. All three models
had the AP above 97% in the testing dataset, illustrating that
these models were able to obtain a favorable performance.
YOLO-v3 performed better than CenterNet and demonstrated
higher precision, recall, AP, and F1 score values. Faster R-CNN
achieved a higher recall value with a lower precision value com-
pared to YOLO-v3. YOLO-v3 and CenterNet had similar AP values.
YOLO-v3 demonstrated the highest F1 score (0.971) among the
three models, along with high precision and recall values of
0.971 and 0.970, respectively. Overall, these results indicate that
YOLO-v3 with the confidence score of 0.4 was the best model in
detecting the vegetable crop.
The speed of weed detection, in terms of FPS, is shown in

Table 3. YOLO-v3, with 55.56 images detected per second,
was 6.94 slower than CenterNet, but noticeably faster than Fas-
ter R-CNN. YOLO-v3 and CenterNet demonstrated a significant
speed advantage of the one-stage model over the two-stage
model. CenterNet exhibited a fast inference rate because it is
an anchor-free detection model and does not require nonmax-
imum suppression and eliminates the need for designing
anchor boxes.57 In this study, CenterNet outperformed the
other detectors on detection efficiency, which demonstrated
the speed advantage of the anchor-free model. Typically,
two-stage models tend to achieve higher accuracy, but with a
higher computational cost than one-stage and/or anchor-free
models.70 Consequently, the low detection speed of the two-
stage detector Faster R-CNN model may limit its potential
applications.71

By jointly analyzing the F1 score, AP, and FPS, YOLO-v3 from the
one-stage family demonstrated superiorities in both accuracy and
computational efficiency compared to CenterNet and Faster
R-CNN. This competitive result mainly comes from its inherent
power in the deeper feature extraction network and the one-
stage architecture.72 Overall, these results demonstrated that
YOLO-v3 was the most efficient and accurate model for detecting
bok choy among the three models.
YOLO-v3 achieved excellent performances in detecting the

vegetable crop under various conditions, including the crop
growing with grasses (Fig. 1(a)), the crop with broadleaf
weeds (Fig. 1(b)), the crop with grasses and desiccated plant
residues (Fig. 1(c)), and the crop planted at high densities
(Fig. 1(d)). The bounding boxes generated by YOLO-v3 failed
to cover every single instance of the vegetable due to occlu-
sion, which reduced the recall values. As shown in Fig. 2(a),
some vegetables were planted too close and were totally
occluded. Although the occurrence of such cases resulted
in missed detection, this is unlikely to be an issue in field
applications because all vegetable areas have been detected.
As shown in Fig. 2(b), the similarity in plant morphology
resulted in erroneous detection and a loss of precision. The
occurrence of this type of erroneous detection can be mini-
mized by increasing the number of training images contain-
ing such weed species.
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3.2 Performance of weed segmentation
While the vegetable crop instances were detected, the plants
(image pixels) outside the bounding boxes of the detected vege-
table instances were marked as weeds. A color index-based seg-
mentation utilizing the ExG + Otsu method was employed to
identify weeds in an RGB color space and to extract weeds from
the background.
The excess green (ExG) index has performed well in separat-

ing the plants from the background. ExG converted a color
image into a greyscale image, which was easy to transform into
a binary image using the method of Otsu. Figure 3 represents
the results when the color index was applied to Fig. 1(a)–(d),
which shows that the ExG + Otsu method yielded high segmen-
tation quality and weeds were effectively extracted from the
background.

Due to color similarities between weeds and the background,
some background pixels were segmented as weeds incorrectly
(noises). These noises disjointedly occur throughout the images.
The relatively small noise regions were eliminated by an area filter
using a thresholding technique. The area of each connected
region was calculated. Afterwards, areas smaller than a preset
threshold (depending on the physical pixel size) were marked as
noise and filtered. Final segmentation results with vegetable
regions were marked with red boxes (Fig. 3).
Weed detection methods traditionally focused on identify-

ing weeds directly,21,22 but various weed species with dis-
tinct plant morphological features and growth densities
may occur in a field. Establishing such a dataset containing
various weed species is time-consuming and labor-intensive,
and may not achieve an effective performance of weed

Table 2. Model performance metrics at different confidence scores in the validation dataset for the three convolutional neural networks evaluated
in the study

Model Confidence score True positive False positive Precision Recall F1 score

YOLO-v3 0.9 683 0 1.000 0.440 0.611
0.8 1195 5 0.996 0.770 0.868
0.7 1335 12 0.991 0.860 0.921
0.6 1428 14 0.990 0.920 0.954
0.5 1490 23 0.985 0.960 0.972
0.4 1521 26 0.983 0.980 0.981
0.3 1536 48 0.970 0.990 0.980
0.2 1536 48 0.970 0.990 0.980
0.1 1552 77 0.953 1.000 0.976

CenterNet 0.9 1288 5 0.996 0.830 0.905
0.8 1412 11 0.992 0.910 0.949
0.7 1474 19 0.987 0.950 0.968
0.6 1505 34 0.978 0.970 0.974
0.5 1521 57 0.964 0.980 0.972
0.4 1536 76 0.953 0.990 0.971
0.3 1536 76 0.953 0.990 0.971
0.2 1552 208 0.882 1.000 0.937
0.1 1552 208 0.882 1.000 0.937

Faster R-CNN 0.9 1428 17 0.988 0.920 0.953
0.8 1474 24 0.984 0.950 0.967
0.7 1474 24 0.984 0.950 0.967
0.6 1490 37 0.976 0.960 0.968
0.5 1505 40 0.974 0.970 0.972
0.4 1505 40 0.974 0.970 0.972
0.3 1521 63 0.960 0.980 0.970
0.2 1521 63 0.960 0.980 0.970
0.1 1536 150 0.911 0.990 0.949

Table 3. Performance metrics comparison of the three convolutional neural networks in the testing dataset

Model Confidence score Precision Recall F1 score AP FPS

YOLO-v3 0.4 0.971 0.970 0.971 0.984 55.56
CenterNet 0.6 0.956 0.950 0.953 0.983 62.50
Faster R-CNN 0.4/0.5 0.955 0.980 0.967 0.975 14.24

AP, average precision; FPS, frames per second.
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detection. In contrast, our method trained the model to
detect vegetables only and all vegetation growing outside
the detected vegetable regions was marked as weeds. This
strategy avoids dealing with various weed species and thus
significantly reduces the complexity of weed detection.

Moreover, the proposed method can accurately detect weeds
even for new and unseen weed species from a region or a
country that are not included in the training dataset.
Based on the high-level performance, the proposed method is

highly suitable for ground-based weed and vegetable

Figure 1. YOLO-v3 generated bounding box predictions for the vegetable crop under various conditions: (a) the vegetable crop growing with grasses,
(b) the vegetable crop growing with broadleaf weeds, (c) the vegetable crop growing with grasses and desiccated plant residues, and (d) the vegetable
crop planted at high densities.
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Figure 2. (a) YOLO-v3 failed to cover every single vegetable due to occlusion (the yellow dashed boxes represent missed detection). (b) The yellow
dashed box represents erroneous detection.

Figure 3. Results when the ExG + Otsu method and area filter were applied to the images in Fig. 1. Figure 3(a)–(d) represents the results when the pro-
posed method was applied to Figs 1(a)–(d), respectively.
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discrimination in bok choy fields. We anticipate that the same
approach can be used to detect weeds in other vegetables as well
as row crops.

4 CONCLUSIONS
This work demonstrated the feasibility of using deep learning for
detection of vegetables, thereby detecting weeds indirectly. The
proposed approach is composed of two stages. A deep-learning
architecture based on CNN was used to detect vegetable
instances and draw bounding boxes around them. Thereafter,
the plants occurring outside of the bounding boxes were consid-
ered as weeds.
The performance of three state-of-the-art deep-learning

models, CenterNet, YOLO-v3, and Faster R-CNN, were evaluated
and compared in terms of AP, F1 score, and inference speed. All
of the three models had the AP above 97% in the testing dataset.
YOLO-v3 outperformed CenterNet and Faster R-CNN with the
highest F1 score. Despite the higher accuracy of the two-stage
detector Faster R-CNN, it is not effective at detecting vegetables
primarily due to the unacceptable detection speed. Overall, the
results of the present study demonstrated that the one-stage
architecture YOLO-v3 was the best detector among the evaluated
neural networks.
The proposed method combined deep learning and traditional

image-processing technology to identify the vegetable crop and
then discriminate between the crop and weeds. The neural net-
work developed in this work can be used in the machine vision
subsystem of robotic weeders for site-specific weed control. Addi-
tional studies will be conducted to detect weeds using themodels
obtained in this work for in situ video input under field conditions.
To further improve the accuracy of weed detection, the deep-
learning models obtained in the present study may need to be
further optimized in the future.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science Founda-
tion of China (Grant No. 32072498) and the Key Research and
Development Program of Jiangsu Province (Grant
No. BE2021016).

CONFLICT OF INTEREST
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from
the corresponding author upon reasonable request.

REFERENCES
1 Ryder E, World vegetable industry: production, breeding, trends. Hortic

Rev 38:299 (2011).
2 Han J, Luo Y, Yang L, Liu X, Wu L and Xu J, Acidification and salinization

of soils with different initial pH under greenhouse vegetable cultiva-
tion. J Soil Sediment 14:1683–1692 (2014).

3 Dai X, Xu Y, Zheng J and Song H, Analysis of the variability of pesticide
concentration downstream of inline mixers for direct nozzle injec-
tion systems. Biosyst Eng 180:59–69 (2019).

4 Liu B and Bruch R, Weed detection for selective spraying: a review. Curr
Robot Rep 1:19–26 (2020).

5 Hamuda E, Glavin M and Jones E, A survey of image processing tech-
niques for plant extraction and segmentation in the field. Comput
Electron Agric 125:184–199 (2016).

6 Slaughter DC, Giles DK and Downey D, Autonomous robotic weed con-
trol systems: a review. Comput Electron Agric 61:63–78 (2008).

7 Mennan H, Jabran K, Zandstra BH and Pala F, Non-chemical weedman-
agement in vegetables by using cover crops: a review. Agronomy 10:
257 (2020).

8 Morales-Payan JP, Santos BM, Stall WM and Bewick TA, Effects of pur-
ple nutsedge (Cyperus rotundus) on tomato (Lycopersicon esculen-
tum) and bell pepper (Capsicum annuum) vegetative growth and
fruit yield. Weed Technol 672-676:672–676 (1997).

9 Lanini W and Strange M, Low-input management of weeds in vegeta-
ble fields. Calif Agric 45:11–13 (1991).

10 Yu J, Sharpe SM, Schumann AW and Boyd NS, Deep learning for image-
based weed detection in turfgrass. Eur J Agron 104:78–84 (2019).

11 Raja R, Slaughter DC, Fennimore SA, Nguyen TT, Vuong VL, Sinha N
et al., Crop signalling: a novel crop recognition technique for robotic
weed control. Biosyst Eng 187:278–291 (2019).

12 Shaner DL and Beckie HJ, The future for weed control and technology.
Pest Manag Sci 70:1329–1339 (2014).

13 Bakhshipour A, Jafari A, Nassiri SM and Zare D, Weed segmentation
using texture features extracted from wavelet sub-images. Biosyst
Eng 157:1–12 (2017).

14 Utstumo T, Urdal F, Brevik A, Dørum J, Netland J, Overskeid Ø et al.,
Robotic in-row weed control in vegetables. Comput Electron Agric
154:36–45 (2018).

15 Siddiqi MH, Ahmad I and Sulaiman SB, Weed recognition based on ero-
sion and dilation segmentation algorithm, in 2009 International Con-
ference on Education Technology and Computer. IEEE, Singapore, pp.
224–228 (2009).

16 Sapkota B, Singh V, Neely C, Rajan N and BagavathiannanM, Detection
of Italian ryegrass in wheat and prediction of competitive interac-
tions using remote-sensing and machine-learning techniques.
Remote Sens (Basel) 12:2977 (2020).

17 Sabzi S, Abbaspour-Gilandeh Y and Arribas JI, An automatic visible-
range video weed detection, segmentation and classification proto-
type in potato field. Heliyon 6:e03685 (2020).

18 Pérez-Ortiz M, Peña J, Gutiérrez PA, Torres-Sánchez J, Hervás-
Martínez C and López-Granados F, A semi-supervised system for
weed mapping in sunflower crops using unmanned aerial vehicles
and a crop row detection method. Appl Soft Comput 37:533–544
(2015).

19 Perez A, Lopez F, Benlloch J and Christensen S, Colour and shape anal-
ysis techniques for weed detection in cereal fields. Comput Electron
Agric 25:197–212 (2000).

20 Wang A, Zhang W and Wei X, A review on weed detection using
ground-based machine vision and image processing techniques.
Comput Electron Agric 158:226–240 (2019).

21 Hasan AM, Sohel F, Diepeveen D, Laga H and Jones MG, A survey of
deep learning techniques for weed detection from images. Comput
Electron Agric 184:106067 (2021).

22 Kamilaris A and Prenafeta-Boldú FX, Deep learning in agriculture: a sur-
vey. Comput Electron Agric 147:70–90 (2018).

23 JordanMI andMitchell TM,Machine learning: trends, perspectives, and
prospects. Science 349:255–260 (2015).

24 Liakos KG, Busato P, Moshou D, Pearson S and Bochtis D, Machine
learning in agriculture: a review. Sensors 18:2674 (2018).

25 LeCun Y, Bengio Y and Hinton G, Deep learning. Nature 521:436–444
(2015).

26 Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B et al., Recent
advances in convolutional neural networks. Pattern Recogn
77:354–377 (2018).

27 Shi J, Li Z, Zhu T, Wang D and Ni C, Defect detection of industry wood
veneer based on NAS and multi-channel mask R-CNN. Sensors
20:4398 (2020).

28 Zhou H, Zhuang Z, Liu Y, Liu Y and Zhang X, Defect classification of
green plums based on deep learning. Sensors 20:6993 (2020).

29 Collobert R and Weston J, A unified architecture for natural language
processing: Deep neural networks with multitask learning, in Pro-
ceedings of the 25th International Conference on Machine Learning.
ICML, Helsinki Finland, pp. 160–167 (2008).

30 Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K and Kuksa P,
Natural language processing (almost) from scratch. J Mach Learn Res
12:2493–2537 (2011).

31 Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N et al., Deep neural
networks for acousticmodeling in speech recognition: the shared views
of four research groups. IEEE Sign Process Mag 29:82–97 (2012).

www.soci.org X Jin et al.

wileyonlinelibrary.com/journal/ps © 2022 Society of Chemical Industry. Pest Manag Sci 2022; 78: 1861–1869

1868

http://wileyonlinelibrary.com/journal/ps


32 Schmidhuber J, Deep learning in neural networks: an overview. Neural
Netw 61:85–117 (2015).

33 Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A and
Sarkar S, An explainable deep machine vision framework for plant
stress phenotyping. Proc Natl Acad Sci 115:4613–4618 (2018).

34 He T, Liu Y, Yu Y, Zhao Q and Hu Z, Application of deep convolutional
neural network on feature extraction and detection of wood defects.
Measurement 152:107357 (2020).

35 Zhou D-X, Theory of deep convolutional neural networks: Downsam-
pling. Neural Netw 124:319–327 (2020).

36 Dhillon A and Verma GK, Convolutional neural network: a review of
models, methodologies and applications to object detection. Prog
Artif Intell 9:85–112 (2020).

37 Raghu S, Sriraam N, Temel Y, Rao SV and Kubben PL, EEG based multi-
class seizure type classification using convolutional neural network
and transfer learning. Neural Netw 124:202–212 (2020).

38 Ramos P, Prieto FA, Montoya E and Oliveros CE, Automatic fruit count
on coffee branches using computer vision. Comput Electron Agric
137:9–22 (2017).

39 Pantazi XE, Moshou D, Alexandridis T, Whetton RL and Mouazen AM,
Wheat yield prediction using machine learning and advanced sens-
ing techniques. Comput Electron Agric 121:57–65 (2016).

40 Pantazi XE, Tamouridou AA, Alexandridis T, Lagopodi AL, Kontouris G
andMoshou D, Detection of Silybummarianum infection withMicro-
botryum silybum using VNIR field spectroscopy. Comput Electron
Agric 137:130–137 (2017).

41 Ferentinos KP, Deep learning models for plant disease detection and
diagnosis. Comput Electron Agric 145:311–318 (2018).

42 Liu W, Wu G, Ren F and Kang X, DFF-ResNet: an insect pest recognition
model based on residual networks. Big Data Mining and Analytics
3:300–310 (2020).

43 Rustia DJA, Chao JJ, Chiu LY, Wu YF, Chung JY, Hsu JC et al., Automatic
greenhouse insect pest detection and recognition based on a
cascaded deep learning classification method. J Appl Entomol
145:206–222 (2021).

44 Pantazi X-E, Moshou D and Bravo C, Active learning system for weed
species recognition based on hyperspectral sensing. Biosyst Eng
146:193–202 (2016).

45 Binch A and Fox C, Controlled comparison of machine vision algo-
rithms for Rumex and Urtica detection in grassland. Comput Electron
Agric 140:123–138 (2017).

46 Zhang M, Li C and Yang F, Classification of foreign matter embedded
inside cotton lint using short wave infrared (SWIR) hyperspectral
transmittance imaging. Comput Electron Agric 139:75–90 (2017).

47 Maione C, Batista BL, Campiglia AD, Barbosa F Jr and Barbosa RM, Clas-
sification of geographic origin of rice by data mining and inductively
coupled plasmamass spectrometry. Comput Electron Agric 121:101–
107 (2016).

48 Olsen A, Konovalov DA, Philippa B, Ridd P, Wood JC, Johns J et al.,
DeepWeeds: a multiclass weed species image dataset for deep
learning. Sci Rep 9:2058 (2019).

49 dos Santos FA, Matte Freitas D, Gonçalves da Silva G, Pistori H and
Theophilo Folhes M, Weed detection in soybean crops using Con-
vNets. Comput Electron Agric 143:314–324 (2017).

50 Yu J, Sharpe SM, Schumann AW and Boyd NS, Detection of broadleaf
weeds growing in turfgrass with convolutional neural networks. Pest
Manag Sci 75:2211–2218 (2019).

51 Yu J, Schumann AW, Sharpe SM, Li X and Boyd NS, Detection of grassy
weeds in bermudagrass with deep convolutional neural networks.
Weed Sci 68:545–552 (2020).

52 Veeranampalayam Sivakumar ANV, Li J, Scott S, Psota E, Jhala A,
Luck JD et al., Comparison of object detection and patch-based

classification deep learning models on mid-to late-season weed
detection in UAV imagery. Remote Sens (Basel) 12:2136 (2020).

53 Le VNT, Ahderom S and Alameh K, Performances of the lbp based algo-
rithm over cnn models for detecting crops and weeds with similar
morphologies. Sensors 20:2193 (2020).

54 Quan L, FengH, Lv Y,WangQ, Zhang C, Liu J et al., Maize seedling detec-
tion under different growth stages and complex field environments
based on an improved faster R–CNN. Biosyst Eng 184:1–23 (2019).

55 Potena C, Nardi D and Pretto A, Fast and accurate crop and weed iden-
tification with summarized train sets for precision agriculture, in
International Conference on Intelligent Autonomous Systems.
Springer, Singapore, pp. 105–121 (2016).

56 Redmon J and Farhadi A, Yolov3: An incremental improvement. arXiv
preprint arXiv:180402767 2018).

57 Zhou X, Wang D and Krähenbühl P, Objects as points. arXiv preprint
arXiv:190407850 2019).

58 Ren S, He K, Girshick R and Sun J, Faster r-cnn: Towards real-time object
detection with region proposal networks. arXiv preprint arXiv:
150601497 2015).

59 Redmon J, Divvala S, Girshick R and Farhadi A, You only look once: uni-
fied, real-time object detection, in 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), IEEE, Las Vegas, NV, pp. 779–788
(2016).

60 Redmon J and Farhadi A, YOLO9000: better, faster, stronger, in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition. IEEE, San Francisco, CA, pp. 7263–7271 (2017).

61 Algabri M, Mathkour H, Bencherif MA, Alsulaiman M and
Mekhtiche MA, Towards deep object detection techniques for pho-
neme recognition. IEEE Access 8:54663–54680 (2020).

62 Gong B, Ergu D, Cai Y and Ma B, Real-time detection for wheat head
applying deep neural network. Sensors 21:191 (2021).

63 Lu J, Behbood V, Hao P, Zuo H, Xue S and Zhang G, Transfer learning
using computational intelligence: a survey. Knowl-Based Syst
80:14–23 (2015).

64 Deng J, Dong W, Socher R, Li L-J, Li K and Fei-Fei L, Imagenet: a large-
scale hierarchical image database, in 2009 IEEE Conference on Com-
puter Vision and Pattern Recognition. IEEE, Miami, FL, pp. 248–255
(2009).

65 Ghosal S, ZhengB, Chapman SC, Potgieter AB, JordanDR,WangX et al., A
weakly supervised deep learning framework for sorghum head detec-
tion and counting. Plant Phenomics 2019:1525874–1525814 (2019).

66 Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J and
Zisserman A, The pascal visual object classes challenge: a retrospec-
tive. Int J Comput Vis 111:98–136 (2015).

67 Woebbecke DM, Meyer GE, Von Bargen K and Mortensen DA, Color
indices for weed identification under various soil, residue, and light-
ing conditions. Trans ASAE 38:259–269 (1995).

68 Gée C, Bossu J, Jones G and Truchetet F, Crop/weed discrimination in
perspective agronomic images. Comput Electron Agric 60:49–59
(2008).

69 Otsu N, A threshold selection method from gray-level histograms. IEEE
Trans Syst Man Cybern 9:62–66 (1979).

70 Carranza-García M, Torres-Mateo J, Lara-Benítez P and García-
Gutiérrez J, On the performance of one-stage and two-stage object
detectors in autonomous vehicles using camera data. Remote Sens
(Basel) 13:89 (2021).

71 Alkentar SM, Alsahwa B, Assalem A and Karakolla D, Practical compara-
tion of the accuracy and speed of YOLO, SSD and faster RCNN for
drone detection. J Eng 27:19–31 (2021).

72 Sharma C, Singh S, Poornalatha G and Ajitha Shenoy KB, Performance
analysis of object detection algorithms on YouTube video object
dataset. Eng Lett 29:813–817 (2021).

Weed detection in vegetable fields www.soci.org

Pest Manag Sci 2022; 78: 1861–1869 © 2022 Society of Chemical Industry. wileyonlinelibrary.com/journal/ps

1869

http://wileyonlinelibrary.com/journal/ps

	A novel deep learning-based method for detection of weeds in vegetables
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Overview
	2.2  Image acquisition
	2.3  Training and testing
	2.4  Weed segmentation

	3  RESULTS AND DISCUSSION
	3.1  Model performance with vegetable detection
	3.2  Performance of weed segmentation

	4  CONCLUSIONS
	ACKNOWLEDGEMENTS
	  CONFLICT OF INTEREST
	  DATA AVAILABILITY STATEMENT

	REFERENCES


